Evaluating the Effects of Yeast Cell Wall Component, Phytochemical Oil, and Vitamin E on Sow Antioxidant Status and Growth Performance of Dam and Offspring (2024)

Related Papers

Frontiers in Veterinary Science

Mint Oil, ɤ-Tocopherol, and Whole Yeast Cell in Sow Diets Enhance Offspring Performance in the Postweaning Period

2021 •

Lily Hernandez

Times of high metabolic activity in gestation and lactation, as well as periods of stress at weaning, can lead to greater incidences of oxidative stress in the dam and offspring during the suckling and postweaning period. Oxidative stress is an imbalance between prooxidant molecules and the antioxidant defense system that can negatively impact growth and/or reproductive performance. The objective of this research was to evaluate the effectiveness of whole yeast cell, peppermint oil, and ɤ-tocopherol in gestation and lactation on maternal oxidative status and offspring growth from birth to market. In study 1, 45 sows and gilts were assigned to one of four diets [control diet (CON), control + whole yeast cell (YC), control + mint oil top dress (MO), and control + yeast cell and mint oil top dress (YCMO)] provided from d110 of gestation through to weaning. A total of 481 weaned offspring were randomly allotted to pens balanced by weight and litter within maternal treatment and received...

View PDF

Effect of vitamin A treatment on superoxide dismutase-defcient yeast strains

2010 •

Daniela Reis Joaquim de Freitas

Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Δ) and CuZnSOD/MnSOD (sod1Δsod2Δ). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.

View PDF

Archives of Microbiology

Effect of vitamin A treatment on superoxide dismutase-deficient yeast strains

2010 •

Rafael Roehrs

Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Δ) and CuZnSOD/MnSOD (sod1Δsod2Δ). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.

View PDF

The Impact of Treated Lemon Pulp with Yeast on Growth Performance, Nutritive Value, Total Anti-Oxidant Enzyme and Immune Response of Growing Rabbits

Hamdy Ameen

View PDF

Veterinary World

Effect of yeast cell wall supplementation on production performances and blood biochemical indices of dairy cows in different lactation periods

2019 •

Veterinary World

Aim: This experiment was conducted to determine the effect of yeast cell wall (YCW) supplementation on production performances and blood biochemical indices such as liver enzyme activities, energy metabolites, and electrolyte concentrations of dairy cows in different lactation periods (LP). Materials and Methods: Thirty-two lactating Holstein cows were assigned into 2×2 factorial arrangement, in which the factors were the treatment (TM) (control [n=16] vs. YCW [n=16]) and the LP (early lactation [n=14] vs. mid-lactation [n=18]). The cows with day in milk (DIM) <120 (81±7 DIM) were defined as early lactating cows, whereas the cows with DIM >120 (179±5 DIM) were assumed as mid-lactating cows. The YCW (SafMannan; Phileo, Lesaffre Animal Care, France) was used as the dietary supplement (10 g/cow/day) in this experiment. The statistical analysis of the data was performed by the two-way analysis of variance using the general linear model procedure to determine the main effects (TM and LP) and their interaction (TM×LP) on production performances and blood biochemical parameters of experimental cows. Results: No significant effects (p>0.05) of YCW supplementation on production performances and blood biochemical indices of cows in TM groups (control vs. YCW) were observed; however, some obvious effects were detected in LP (early-and mid-lactation). Milk and milk component yield of cows in early lactation were significantly higher (p<0.05) than in mid-lactation, whereas somatic cell count and milk urea nitrogen were not different (p>0.05) with the YCW supplementation. The higher level (p<0.05) of serum albumin was found in mid-lactating cows after YCW supplementation. Before the experiment, the higher (p<0.05) non-esterified fatty acid (NEFA) and NEFA/total cholesterol (T-Cho) ratio, and the lower (p<0.05) calcium (Ca) concentration were observed in early lactating cows comparison with mid-lactating cows; however, there were not different after YCW supplementation. Conclusion: The positive effects of YCW supplementation on milk and milk component yields, energy metabolite, especially NEFA and NEFA/T-Cho ratio and Ca concentration were observed in early lactating cows rather than mid-lactating cows.

View PDF

Frontiers in Veterinary Science

The Effects of Dietary Supplementation of Saccharomyces cerevisiae Fermentation Product During Late Pregnancy and Lactation on Sow Productivity, Colostrum and Milk Composition, and Antioxidant Status of Sows in a Subtropical Climate

2020 •

Spencer Potter

View PDF

Journal of Applied Animal Research

Influence of feeding enzymatically hydrolysed yeast cell wall + yeast culture on growth performance of calf-fed Holstein steers

Noemi Guadalupe Torrentera Olivera

View PDF

Journal of Animal Science and Biotechnology

Addition of tert-butylhydroquinone (TBHQ) to maize oil reduces lipid oxidation but does not prevent reductions in serum vitamin E in nursery pigs

Gerald Shurson

View PDF

Egyptian Poultry Science Journal

Antioxidant Activity, Se Deposition and Growth Performance of Broilers as Affected by Selenium-Enriched Yeast

2018 •

Mohamed Shourrap

View PDF

Indian Journal of Animal Sciences

Effects of essential oil and yeast culture supplements on growth performance, nutrient digestibility and blood characteristics in weaning pigs

2015 •

Santi Upadhaya

View PDF
Evaluating the Effects of Yeast Cell Wall Component, Phytochemical Oil, and Vitamin E on Sow Antioxidant Status and Growth Performance of Dam and Offspring (2024)
Top Articles
Latest Posts
Article information

Author: Francesca Jacobs Ret

Last Updated:

Views: 5812

Rating: 4.8 / 5 (68 voted)

Reviews: 91% of readers found this page helpful

Author information

Name: Francesca Jacobs Ret

Birthday: 1996-12-09

Address: Apt. 141 1406 Mitch Summit, New Teganshire, UT 82655-0699

Phone: +2296092334654

Job: Technology Architect

Hobby: Snowboarding, Scouting, Foreign language learning, Dowsing, Baton twirling, Sculpting, Cabaret

Introduction: My name is Francesca Jacobs Ret, I am a innocent, super, beautiful, charming, lucky, gentle, clever person who loves writing and wants to share my knowledge and understanding with you.